Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 72018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30284535

RESUMO

Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.


Assuntos
Quitinases/genética , Bactérias Fixadoras de Nitrogênio/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Quitinases/metabolismo , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/genética , Lotus/química , Lotus/genética , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética
2.
Elife ; 72018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29957177

RESUMO

Recognition of Nod factors by LysM receptors is crucial for nitrogen-fixing symbiosis in most legumes. The large families of LysM receptors in legumes suggest concerted functions, yet only NFR1 and NFR5 and their closest homologs are known to be required. Here we show that an epidermal LysM receptor (NFRe), ensures robust signalling in L. japonicus. Mutants of Nfre react to Nod factors with increased calcium spiking interval, reduced transcriptional response and fewer nodules in the presence of rhizobia. NFRe has an active kinase capable of phosphorylating NFR5, which in turn, controls NFRe downstream signalling. Our findings provide evidence for a more complex Nod factor signalling mechanism than previously anticipated. The spatio-temporal interplay between Nfre and Nfr1, and their divergent signalling through distinct kinases suggests the presence of an NFRe-mediated idling state keeping the epidermal cells of the expanding root system attuned to rhizobia.


Assuntos
Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/genética , Lotus/metabolismo , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Cálcio/metabolismo , Lipopolissacarídeos/metabolismo , Lotus/genética , Lotus/microbiologia , Mutação , Fixação de Nitrogênio/fisiologia , Fosforilação , Células Vegetais/metabolismo , Células Vegetais/microbiologia , Proteínas de Plantas/metabolismo , Nodulação/genética , Receptores de Superfície Celular/metabolismo , Rhizobium/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais , Simbiose/fisiologia
3.
Proc Natl Acad Sci U S A ; 113(49): E7996-E8005, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27864511

RESUMO

Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.


Assuntos
Lotus/microbiologia , Consórcios Microbianos , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Brassicaceae/microbiologia , Fertilizantes , Simbiose
4.
Mol Plant Microbe Interact ; 16(12): 1069-76, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14651340

RESUMO

During the past decade, the legume Lotus japonicus has emerged as an important model system for study of symbiotic nitrogen fixation. Controlled expression of genes involved in symbiosis from an inducible promoter at specific time points would be a valuable tool for investigating gene function in L. japonicus. We have attempted to study the function of the putative transcription factors LjNDX and LjCPP1 by expression from the GVG inducible system. This study showed that the GVG system itself causes growth disturbances in L. japonicus. Shoot internode elongation and root pericycle cell division are affected when the chimeric GVG transcription factor is activated. We suggest that deficient auxin signaling could cause the phenotype observed and conclude that the GVG inducible system is not well suited for use in the model legume L. japonicus.


Assuntos
Glucocorticoides/farmacologia , Lotus/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Sequência de Bases , Divisão Celular/efeitos dos fármacos , Primers do DNA , Giberelinas/administração & dosagem , Modelos Biológicos , Raízes de Plantas/citologia , Brotos de Planta/citologia , Fatores de Transcrição/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...